LASTAMPA it

Ambiente

24/9/2008 - DAL CIBO AVVELENATO ALL'AGRICOLTURA ECO-COMPATIBILE

Il Pianeta "bolle" e noi dobbiamo cambiare le piante

Le nuove specie manipolate crescono in luoghi impossibili

CHIARA TONELLI

UNIVERSITA' DI MILANO

Dopo la Rivoluzione verde del '900, che ha aumentato la produzione di cibo, ora la sfida è migliorarne la qualità, vale a dire mantenere o aumentare i livelli di produzione in modo sostenibile dal punto di vista ambientale, sociale ed economico.

Primo punto: risparmiare l'acqua, bene irrinunciabile ma non inesauribile. Viviamo in un pianeta di sale. Il volume totale d'acqua sulla Terra è di 1.4 miliardi di Km3, ma solo il 2,5% del totale è acqua dolce. Inoltre la maggior parte dell'acqua dolce non è disponibile perché è sotto forma di ghiaccio e di neve permanente o è situato sottoterra in modo non raggiungibile. Si stima che solo lo 0,01% dell'acqua sia disponibile per gli ecosistemi e per gli uomini.

Il 10% dell'acqua utilizzata ogni giorno è usata direttamente dalla popolazione, il 20% dall'industria e il 70% dall'agricoltura. La responsabilità di un uso sostenibile è quindi da ripartire in tre aree nella stessa proporzione. Sul mondo della produzione agricola pesa il grosso della responsabilità dell'emergenza acqua. E anche dell'emergenza cibo, perché senz'acqua non c'è produzione e dunque non c'è cibo. L'alternativa alla fame e alla sete è dunque orientarsi verso piante che abbiamo minor bisogno di acqua per nascere, crescere

e produrre commestibili. Il compito è ancora più difficile perché il riscaldamento globale ha avuto due effetti devastanti: ha reso molte piante inadatte, perché incapaci di crescere a più alte temperature, e ha aumentato la percentuale di terreni salini, inadatti anch'essi alla coltivazione.

Il fenomeno si crea perché, quando si irriga il suolo a temperature più elevate, l'acqua evapora e lascia sul suolo il sale. Il 20% dei suoli agricoli irrigui, su 250 milioni di ettari, è interessato dal processo di salinizzazione, il primo passo verso la desertificazione. Certamente esistono sistemi di irrigazione, anche avanzati, ma la tecnologia non è applicabile ovunque, per cui la soluzione sta nella scienza e nella sua capacità di adattare geneticamente le piante all'evoluzione del pianeta: piante che resistono alla siccità, che nascono in terreni salini e che producono cibo con meno acqua.

Dovremo quindi impegnarci sul miglioramento genetico delle piante coltivate, selezionando piante che resistano ai nuovi stress ambientali: gli agenti patogeni e alla mancanza di acqua. Ogni anno circa il 30% della produzione agricola si perde per questi due motivi, e in Africa si arriva a picchi dell'80%. Evitare queste perdite significa aumentare la produzione senza aumentare le superfici da coltivare e ridurre i costi di produzione. Oggi contro le malattie si utilizzano i pesticidi che hanno il vantaggio di salvare la pianta, ma sono costosi e inquinanti. I laboratori di tutto il mondo sono impegnati nell'obiettivo di rendere le piante più resistenti alle malattie - mettendo nel DNA geni di altre piante che hanno più difese naturali, come quelle selvatiche - e in quello di ottenere piante che siano più efficienti nell'utilizzo di fertilizzanti.

Altro obiettivo è combinare i geni per ottenere piante «water-saving». Un sistema è modificare gli stomi, che sono dei pori presenti sulla superficie delle foglie attraverso i quali la pianta assorbe CO2, ed espelle ossigeno, ma anche il 90% dell'acqua che assorbe attraverso le radici. Al Dipartimento di Scienze Biomolecolari e Biotecnologie dell'Università Statale di Milano, modificando un gene che rende gli stomi un po' più piccoli, abbiamo realizzato una pianta che fa evaporare solo il 60% di acqua e, trattenendone di più, necessita di circa il 30% in meno di acqua. Abbiamo ottenuto questo risultato con l'Arabidopsis, la pianta modello di riferimento, e stiamo trasferendo questi risultati in piante da coltivare: presto vedremo pomodori «water-saving».

Chi è Tonelli Genetista

RUOLO: E' PROFESSORE DI GENETICA ALL'UNIVERSITA' DI MILANO E LEADER DEL GRUPPO DI «GENETICA MOLECOLARE DELLE PIANTE» RICERCHE: APPLICAZIONI BIOTECNOLOGICHE

Copyright ©2008 La Stampa